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Stress analysis of elastomeric materials at large 
extensions using the finite element method 
Part III Coalescence of primary and secondary cracks and 
generation of fracture surface roughness 

Y: F U K A H O R I ,  W. SEKI 
Research and Development Division, Bridgestone Corporation, Kodaira-shi, Tokyo 187, Japan 

A newly developed finite element method is applied to the stress and strain analyses of stress 
fields, at the vicinity of a primary crack surrounded by secondary cracks. The results show that 
the primary crack propagation deviates from the crack axis, when a secondary crack entered 
the stress fields of the primary crack within the distance of the diameter of the secondary 
crack. The fundamental unit of surface roughness, the deviation from planarity, will be the dia- 
meter of the secondary crack. The roughness generated in real elastomers strongly depends on 
mechanical hysteresis, and thus the fracture surface energy of the materials. 

1. In troduct ion  
In a series of studies [1, 2], we have performed stress 
and strain analyses around spherical holes and rigid 
spherical particles in elastomeric materials under large 
deformation, using a newly developed finite element 
method. The results obtained are of great importance 
not only to the initiation of microcracks, which arise 
from such inclusions in the matrix, but also for the 
propagation of cracks passing through the coalescence 
of microcrack to microcrack and microcrack to 
macrocrack. 

For a single crack in a homogeneous matrix, the 
fracture surface generated by the propagation of a 
crack will generally show a perfect planarity, because 
the crack propagates in a straightforward fashion, 
following the maximum stress produced in the vicinity 
of the crack, perpendicular to the extension direction. 
According to the Griffith concept, the work done 
during fracture should be increased for the generation 
of a concave-convex surface compared with that of 
plane surface, because more energy should be ex- 
pended for creating the increased surface area. This 
means that when we face the rough fracture surface of 
materials, we can assume that the fracture took place 
in a material of high fracture surface energy (i.e. of 
high fracture toughness). 

Nearly 15 years ago, Fukahori [3] and Fukahori & 
Andrews [4] found an inverse correlation between 
fracture surface roughness, R and mechanical hyster- 
esis ratio, h in highly deformable materials such as 
rubber, i.e. R x h = constant. As h increases, the frac- 
ture surface energy T also increases, as described by 
Andrews' equation [5]; the above relation also gives 
the inverse correlation between the fracture surface 
roughness, R and the fracture surface energy, T. This 
result contrasts with that expected from the Griffith 
concept, thus it was proposed [3,4] that the mech- 
anism of roughness generation in visco-elastic solids is 

based on the hypothesis that surface roughness (i.e. a 
deviation of the fracture from perfect planarity) is 
generated through the coalescence of a primary crack 
and secondary cracks. Secondary cracks such as cavi- 
ties, voids and particles propagate in the high-stress 
region surrounding a primary crack front and join up 
with the primary crack, even though they lie in a 
different plane from the path of the primary crack, by 
shear of the intervening material. When we consider 
the growth of a secondary crack in non-linear visco- 
elastic materials, the energy required to propagate a 
crack increases with fracture surface energy, T, of the 
material. Alternately, in a given stress field a second- 
ary crack will only propagate in a small zone sur- 
rounding a primary crack if T is large, because the 
stress level decays with distance from the primary 
crack tip. As the scale of roughness will directly relate 
to the separation of the planes of the primary and 
secondary cracks, a higher fracture surface energy will 
produce a lower degree of roughness. These situations 
are summarized in the literature [6]. The heavy and 
complex roughness seen on the fracture surface of 
elastomers, which may be in the order of 1 mm, can be 
understood only when we consider the stress fields 
consisting of a primary crack and surrounding sec- 
ondary cracks and their coalescence, instead of the 
propagation of a single crack. 

In recent years, many studies [7-9],  have been 
carried out on the ductile fracture of metals, in which 
the microcracking around the tip of a macrocrack is 
discussed in relation to nucleation, propagation and 
coalescence of microvoids, microcracks and macro- 
cracks. For this purpose, a finite element method is 
used to estimate the fracture process of a propagating 
crack. In previous papers [1-2],  we applied a newly 
developed finite element method to stress and strain 
analyses around spherical holes and spherical rigid 
particles in elast0mers. The results thus obtained show 
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that stress and strain distribution around such inclu- 
sions deviate from the theoretical solution, as the 
average strain increases and as the nonlinearity of 
matrix elastomers increases. 

In the present report the process by which a pri- 
mary crack develops and joins up to asecondary 
crack, and generates a fracture surface roughness in 
nonlinear elastomeric materials, is discussed. This 
study deals with problems of microcracking of elas- 
tomers under static loading, which will make analysis 
of dynamic fracture possible in the near future. 

2. Fini te  e l e m e n t  methods  and 
exper iments  

As theoretical backgrounds of a finite element method 
(FEM) have already been described in detail in pre- 
vious papers [1,2], a brief outline of the newly de- 
veloped FEM is given here. The method includes two 
important elements. Firstly, the strain, energy function 
of real elastomers, the elastic energy stored in a defor- 
med body, is experimentally evaluated through strip 
bi-axial (pure shear) testing. Secondly, computer pro- 
gramming has been improved based on the mixed 
variational method to treat the problems of incom- 
pressibility in elastomers. 

In this study, two-dimensional simulation (plane 
strain condition) is performed to give finer meshes for 
computation and thus more accurate results. The 
strain energy function of slightly filled natural rubber 
(NR2) is used for simulation. 

The secondary crack is located in front of the 
primary crack under large extension, and a specimen 
of dimensions schematically illustrated in Fig. 1 is 
fixed to hard clamps and extended perpendicular to 
the primary crack axis X. The secondary crack is 
assumed to have a radius of r o, equal to the curvature 
of the primary crack, and to approach the primary 
crack from the angle of 45 ~ to the X-axis (example 1; 
Fig. 2a) and parallel to the X-axis keeping the distance 
Y = ro (example 2; Fig. 2b). 
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Figure 1 Finite-element model of a primary crack of length 10r o 
and tip curvature ro, and a secondary crack of radius r o subjected to 
a uniform gross strain t o. 

The distance between the centres of curvature of 
two cracks, L ( =  l +  2to) where 1 is the minimum 
distance between the surfaces of two cracks, is varied 
in both cases. The tip of the primary crack and the 
circumference of the secondary crack are divided 
equally and named Pt ~ Ps and $1 ~ $5, respectively, 
as shown in Fig. 3. Fig. 4 is an example of finite 
element models when the primary and secondary 
cracks are adjacent. Stress and strain are predicted by 
the maximum principal stress (true stress) ~r and the 
maximum principal strain ~. Uniform (average) strain 
% is applied to the system remote from the cracks. 
Stress and strain distributions are represented on the 
undeformed coordinates. 

3. Results and discussion 
3.1. Stress and strain distribution around 

primary and secondary cracks 
Figs 5 and 6 are distorted meshes, originally given in 
Fig. 4, at average strains of 10 and 100%, respectively. 
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Figure 2 (a) Schematic illustration representing the situation of a 
secondary crack approaching a primary crack from the angle of 45 ~ 
to the X-axis (example 1). (b) As (a), approaching parallel to the X- 
axis keeping the distance Y = r o (example 2). 

Figure 3 Equally divided crack fronts. 
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Figure 4 An example of finite element meshes. 
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Figure 5 A distorted mesh at ~o = 10%. 

Figure 6 A distorted mesh at so = 100%. 

Figs 7 and 8 are the stress and  strain d is t r ibut ions  in 
the vicinity of the tip of a p r imary  crack at eo = 100% 
when a p r imary  crack a lone  exists. The m a x i m u m  
stress and  strain occur  at po in t  P~ as the m a x i m u m  
stress and  strain occur  at poin t  S~ in a single second- 
ary crack. Fig. 9 shows the stress d i s t r ibu t ion  a round  
the tip of a p r imary  crack when the secondary  crack is 
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Figure 7 Contour map of the maximum principal stress (10 MPa) 
in the vicinity of the tip of a primary crack at % = 100%. 

) 
Figure 8 Contour map of the maximum principal strain (10 MPa) 
in the vicinity of the tip of a primary crack at % = 100%. 

at a distance,  l/2r o = 0.41 in example  1 at  ao = 100%. 
It is clearly seen that  the pos i t ion  at which the max-  
imum local  stress occurs deviates from P1 to P3 at the 
tip of the p r imary  crack, and  from $1 to near ly  $3 at  
the circumference of the secondary  crack. Similarly,  
the m a x i m u m  local s t ra in  appears  at points  P2 and  $2 
devia ted  from P1 and $1, as shown in Fig. 10. Figs  11 
and  12 show two cracks that  are much closer, i.e. l/2r o 

= 0.061 and at  eo = 100%. The m a x i m u m  local stress 
and  strain a round  two cracks occur at P3 and S 3, and  
their  magni tudes  are much higher  than those given 
when both  cracks remain  undis tu rbed  by each other. 

3.2. Deviation of the trajectory of crack 
propagation from planarity 

In Fig. 13 the m a x i m u m  pr incipal  strain at points  
P1 ~ P5 is p lo t ted  as a funct ion of the normal ized  
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Figure 9 Contour map of the maximum principal stress (10 MPa) 
around the tip of the primary and secondary cracks at l/2r o = 0.41 
and ao = 100% (example 1). 

Figure 11 Contour map of the maximum principal stress (10 MPa) 
around the tip of the primary and secondary cracks at l/2r o = 0.061 
and t0 = 100% (example 1). 

6s  

Figure 10 Contour map of the maximum principal strain (10 MPa) 
around the tip of the primary and secondary cracks at 1/2r o = 0.41 
and % = 100% (example 1). 

Figure 12 Contour map of the maximum principal strain (10 MPa) 
around the tip of the primary and secondary cracks at l/2r o = 0.061 
and ~o = 100% (example 1). 

distance 1/2r o, keeping the angle of 45 ~ (example 1) at 
~o = 150%. It is shown that the maximum local strain 
which appears a round  the pr imary crack changes its 
position from P1 to P2 and to P3 as the distance 
decreases. At the same time, the position of the max- 
imum local strain at the circumference of the second- 
ary crack also varies from S~ to $3 with decreasing 
distance, as shown in Fig. 14. In both cases (Figs 13 
and 14) the position of the maximum local strain 
deviates from P~ and S~ to other points, i.e. from the 
crack axis X when l /2r  o < 1. The same situations are 
also seen in example 2. When the secondary crack 
approaches the pr imary crack parallel to the X-axis, 
keeping Y = ro, the position of the maximum local 
strain deviates from PI  and $1 to other points at 
l /2r  o < 1, as shown in Figs 15 and 16. 

It is concluded that when the secondary crack 
enters the stress fields of the pr imary crack within the 

distance l /2r  o = 1, i.e. the diameter of the secondary 
crack, the position of the maximum local strain (and 
thus the maximum local stress) at the boundary  of 
pr imary and secondary cracks varies from P1 and S 1 
to other points. 

As a crack initiates and propagates at a point  where 
the maximum local stress or strain occurs in the 
system, then the pr imary crack deviates from the 
X-axis when it reaches the secondary crack within the 
distance of the diameter of the secondary crack. How- 
ever, it seems that it is when the position of the 
maximum local strain in the pr imary and secondary 
cracks lie at P z - P 3  and $ 2 - $ 3 ,  respectively (i.e. 
l /2r  o -  1/2, when l =  r0) that two cracks face and 
coalesce each other. 

Therefore the fundamental  unit of roughness, AR, 
the deviation from the planarity, will be given by the 
summat ion  of the radius of two cracks, 2ro and the 
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Figure 13 Maximum principal strain at points Pa-Ps as a function 
of the normalized distance l/2r o at a o = 150% (example 1). 
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Figure 14 Maximum principal strain at points S1-S 5 as a function 
of the normalized distance I/2r o at % = 150% (example 1). 

distance between two cracks, r 0, considering the angle 
to the X-axis, which is nearly the diameter of the 
secondary crack propagated before the coalescence 
with the primary crack. These situations are shown 
schematically in Fig. 17, which also shows slippage of 
the crack axis. 
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Figure 15 Max imu m principal strain at points P I - P 5  as a function 
of the normalized distance l/2r o at % = 150% (example 2). 
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Figure 16 Maximum principal strain at points S 1 S 5 as a function 
of the normalized distance l/2r o at % = 150% (example 2). 

3.3. Factors in governing the surface 
roughness formation 

Fig. 18 shows the trajectory of a primary crack propa- 
gated and coalescence with cavities, indicating that the 
deviation from the crack axis strongly depends on 
the number and size of cavities. Figs 19a, b and 20a, b 
are fracture surfaces of unifilled Styren Butadien Rub- 
ber (SBR) and .carbon black-filled SBR vulcanizates, 
respectively, whose features are quite different (i.e. very 
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Figure 17 Fundamental  unit of the roughness, AR = • 2r 0 and the slippage of the crack axis (schematic). 

Figure 18 Photographs showing the coalescence of the primary 
crack and cavities. 

rough in the former and very smooth in the latter). The 
maximum roughness is of the order of 50 lam in filled 
SBR and of ~ 300 500pm in unfilled SBR. The 
compounding recipe and their physical properties are 
given in Table I and Fig. 21. 

Now we consider the factors to govern the surface 
roughness formation in two rubber vulcanizates. 
Firstly, we must consider whether there is a large 
difference in the number or size of inherent flaws in the 
two materials. Although there is little detailed in- 
formation available about the number of inherent 
flaws in rubber vulcanizates, it is likely that there is no 
large difference between until.led and filled rubbers. 
However, the number is probably smaller in unfilled 
rubber than in filled rubber, considering the poor 
dispersion of carbon blacks in rubber compounds. On 
the other hand, many studies [10-13] have been 
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Figure 19 (a) Three-dimensional picture of a fracture surface of 
unfilled SBR. (b) As (a) but at higher magnification. 
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Figure 21 Stress-strain curves in simple tension. 

500 

Figure 20 (a) Three-dimensional picture of a fracture surface of 
filled SBR. (b) As (a) but at higher magnification. 

TABLE I Compounding details of materials (parts by weight) 
and their physical properties 

Unfilled SBR Filled SBR 

SBR 100 100 
HAF Carbon 0 50 
Surphur 1.5 1.5 
Hysteresis ratio, hlo o 0.157 0.424 
Fracture energy, W o, (MJ m 3) 5.60 47.8 

reported for the inherent flaw size of Co in rubbers, 
which shows that values of Co are almost independent 
of species of rubbers and whether they are unfilled or 
filled, being of the order of ~ 40-60 tam. Accordingly, 
a very large difference in surface roughness in the two 
rubbers (shown in Figs 19 and 20) is not attributable 
to the number or size of inherent flaws originally 
involved in the material. 

As a second step, we must consider the propagation 
of inherent flaws (as secondary cracks) before their 

coalescence with the primary crack. The important 
point for the coalescence of the primary and second- 
ary cracks is the effective number and the effective size 
Of secondary cracks, which have propagated in the 
strong stress field around the primary crack when two 
cracks coalesce. The roughness of nearly 50 tam in 
filled SBR, as given in Fig. 20, shows that secondary 
cracks had grown slightly only in the vicinity of the 
crack axis X when they coalesced with the primary 
crack. On the other hand, in unfilled SBR (as shown in 
Fig. 19) the very rough fracture surface (whose min- 
imum roughness is nearly 50 gm but maximum is of 
the order of 300-500 tam) means that secondary 
cracks grew largely even in the stress field far from the 
original crack axis. 

It is natural that the speed of crack propagation 
strictly depends on the fracture surface energy T of the 
matrix rubber, i.e. the higher the fracture surface 
energy, the lower the propagation of the crack. The 
physical properties of unfilled and filled SBR are 
shown in Fig. 21 and Table I. The mechanical hyster- 
esis ratio, h and the fracture energy, W 0 given by the 
area under the stress-strain curve (and thus T) are 
much higher in filled than in unfilled SBR. Therefore, 
as Fukahori & Andrews [3, 4] have shown previously, 
in a given stress field surrounding the primary crack, 
inherent flaws (then secondary cracks) in unfilled SBR 
will propagate much faster and in a much larger zone 
surrounding the primary crack than in filled SBR, 
which as a result, generates a very rough fracture 
surface in unfilled SBR. 

4 .  C o n c l u s i o n  

A newly developed finite element method is applied to 
the stress and strain analysis of stress fields at the 
vicinity of a primary crack surrounded by secondary 
cracks. The results show that the primary crack 
propagation deviates from the crack axis when a 
secondary crack enters the stress fields of the primary 
crack, within the distance of the diameter of the 
secondary crack. The fundamental unit of surface 
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roughness, the deviation from planarity, will be the 
diameter of the secondary crack. The roughness gener- 
ated in real elastomers depends heavily on mechanical 
hysteresis and thus the fracture surface energy of the 
materials, as shown by Fukahori & Andrews [3, 4]. In 
a given stress field surrounding the primary crack, 
inherent flaws (then secondary cracks) in unfilled SBR 
(of a small T) will propagate much faster, and in a 
much larger zone surrounding the primary crack, than 
in filled SBR (of a large T), which as a result generates 
a very rough surface in unfilled SBR. 
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